Table 6. Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (3)

$\mathrm{P}-\mathrm{Si}(1)$	$2.241(1)$	$\mathrm{P}-\mathrm{Si}(2)$	$2.246(1)$
$\mathrm{P}-\mathrm{Si}(3)$	$2.248(1)$	$\mathrm{Si}(1)-\mathrm{C}(1)$	$1.870(3)$
$\mathrm{Si}(1)-\mathrm{C}(2)$	$1.876(2)$	$\mathrm{Si}(1)-\mathrm{C}(3)$	$1.868(2)$
$\mathrm{Si}(2)-\mathrm{C}(4)$	$1.868(3)$	$\mathrm{Si}(2)-\mathrm{C}(5)$	$1.869(3)$
$\mathrm{Si}(2)-\mathrm{C}(6)$	$1.862(3)$	$\mathrm{Si}(3)-\mathrm{C}(7)$	$1.865(3)$
$\mathrm{Si}(3)-\mathrm{C}(8)$	$1.870(3)$	$\mathrm{Si}(3)-\mathrm{C}(9)$	$1.865(3)$
$\mathrm{Si}(3)-\mathrm{P}-\mathrm{Si}(2)$	$106.5(1)$	$\mathrm{Si}(3)-\mathrm{P}-\mathrm{Si}(1)$	$105.8(1)$
$\mathrm{Si}(2)-\mathrm{P}-\mathrm{Si}(1)$	$105.8(1)$	$\mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{C}(2)$	$108.0(1)$
$\mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{C}(1)$	$109.0(1)$	$\mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{P}$	$107.9(1)$
$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(1)$	$108.9(1)$	$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{P}$	$107.3(1)$
$\mathrm{C}(1)-\mathrm{Si}(1)-\mathrm{P}$	$115.5(1)$	$\mathrm{C}(6)-\mathrm{Si}(2)-\mathrm{C}(5)$	$108.1(1)$
$\mathrm{C}(6)-\mathrm{Si}(2)-\mathrm{C}(4)$	$108.8(1)$	$\mathrm{C}(6)-\mathrm{Si}(2)-\mathrm{P}$	$106.7(1)$
$\mathrm{C}(5)-\mathrm{Si}(2)-\mathrm{C}(4)$	$108.5(1)$	$\mathrm{C}(5)-\mathrm{Si}(2)-\mathrm{P}$	$107.8(1)$
$\mathrm{C}(4)-\mathrm{Si}(2)-\mathrm{P}$	$116.5(1)$	$\mathrm{C}(9)-\mathrm{Si}(3)-\mathrm{C}(8)$	$108.1(1)$
$\mathrm{C}(9)-\mathrm{Si}(3)-\mathrm{C}(7)$	$108.6(1)$	$\mathrm{C}(9)-\mathrm{Si}(3)-\mathrm{P}$	$108.0(1)$
$\mathrm{C}(8)-\mathrm{Si}(3)-\mathrm{C}(7)$	$109.2(1)$	$\mathrm{C}(8)-\mathrm{Si}(3)-\mathrm{P}$	$106.7(1)$
$\mathrm{C}(7)-\mathrm{Si}(3)-\mathrm{P}$	$116.0(1)$		

Data collection and cell refinement: CAD-4 Software (EnrafNonius, 1989). Data reduction: DATAP (Coppens, Leiserowitz \& Rabinovich, 1965). Structure solution: direct methods using SHELX86 (Sheldrick, 1990). Structure refinement: SHELXL93 (Sheldrick, 1993) and GFMLX (Flack, 1983). Molecular graphics: ORTEPII (Johnson, 1976), XANADU (Roberts \& Sheldrick, 1976) and SYBYL (Tripos Associates Inc., 1994). Preparation of material for publication: DAESD (Davis \& Harris, 1970).

[^0]
References

Brodalla, D., Mootz, D., Boese, R. \& Osswald, W. (1985). J. Appl. Cryst. 18, 316-319; adapted for use on a CAD-4.
Bruckmann, J. \& Krüger, C. (1995). Acta Cryst. C51, 1155-1158.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Davis, R. E. \& Harris, D. R. (1970). DAESD. Roswell Park Memorial Institute, USA.
Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delf, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Roberts, P. \& Sheldrick, G. M. (1976). XANADU. Program for Crystallographic Calculations. Univ. of Cambridge, England.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
Tolman, C. A. (1970). J. Am. Chem. Soc. 92, 2956-2965.
Tolman, C. A. (1977). Chem. Rev. 77, 313-348.
Tripos Associates Inc. (1994). SYBYL. Version 6.03. Tripos Associates Inc., St Louis, USA.

Acta Cryst. (1995). C51, 1155-1158

Trimethylphosphine and Triethylphosphine in the Solid State

Joachim Bruckmann and Carl Krüger
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany
(Received 24 August 1994; accepted 9 December 1994)

Abstract

Crystals of the title compounds, $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{P}$ (1) and $\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{P}$ (2), were grown in glass capillaries using zone-melting techniques [Brodalla, Mootz, Boese \& Osswald (1985). J. Appl. Cryst. 18, 316-319]. Data sets were collected at 102 K . The asymmetric unit of (1) contains two independent half molecules which are situated on mirror planes. A small amount of disorder was observed for the P atoms (94/6). The $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles lie between 99.1 (1) and 99.4 (1) ${ }^{\circ}$. In (2), the atoms are arranged in a pseudo-threefold-rotation symmetry. The $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles are in the range $98.8(1)-100.2(1)^{\circ}$.

Comment

Phosphines are important ligands in organometallic chemistry. To rationalize the steric effects in phosphineexchange equlibria of organo-nickel compounds, the cone angle, θ, concept was introduced by Tolman (1970). The cone angle θ was correlated with the relative stabilities of complexes containing tertiary substituted phosphines, as well as with spectroscopic observations for these phosphine complexes (Tolman, 1970; Rahman, Liu, Eriks, Prock \& Giering, 1989). The steric parameter θ for triply substituted phosphines is the apex angle of a cone, centered $2.28 \AA$ from the P atom, which touches the van der Waals radii of the outermost atom of each ligand (Tolman, 1977). The crystal structures of PMe_{3}, (1), and PEt_{3}, (2), were studied as part of a program to systematically examine the structures of uncoordinated phosphine ligands.

(1)

(2)

In PMe_{3}, Bartell \& Brockway (1960) determined the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angle as 98.6 (3) ${ }^{\circ}$ and the C - P distance as 1.847 (3) \AA by means of electron diffraction. Magnusson (1986) undertook ab initio calculations and computed
values of 99.1° and $1.843 \AA$; MM3 force-field calculations resulted in values of 98.6° and $1.8456 \AA$ (Fox, Bowen \& Allinger, 1992).

In our X-ray experiment, two independent half molecules were found in the asymmetric unit of (1) with a mirror plane passing through the P atom and one of the C atoms (Fig. 1). Significant residual electron density $\left(1.1 \mathrm{e} \AA^{-3}\right)$ was found $1.7 \AA$ from the P atom. This electron density was located opposite the lone pair of the P atom. When a 6% disorder of the P atom (Fig. 2) is included, the R factor improves from 0.049 to 0.037 and the $w R$ factor improves from 0.058 to 0.049 . The minimum intermolecular distance of a $6 \% \mathrm{P}$ atom from a $94 \% \mathrm{P}$ atom is 3.43 (4) \AA. As alkyl phosphines show no inversion at the P atom (Rademacher, 1987), as known, for example, from PH_{3} and related compounds, the observed disorder cannot be attributed to dynamic inversion.

The $\mathrm{C}-\mathrm{P}_{94 \%}-\mathrm{C}$ angles are in the range 99.1 (1)$99.4(1)^{\circ}$ and the $\mathrm{C}-\mathrm{P}_{94 \%}$ distances range between 1.827 (3) and 1.841 (5) \AA (Table 2). Geometric data at the 6% disordered P atom are of lower accuracy and differ significantly from the values of the main part of the P atom.

A comparison of all experimental data, including gasphase data (Lide \& Mann, 1958; Bartell \& Brockway, 1960; Hillier \& Saunders, 1970; Rahman, Liu, Eriks,
b

Fig. 1. ORTEPII (Johnson, 1976) plot of the cell contents of PMe_{3} viewed along the c axis.

Fig. 2. ORTEPII plot of PMe_{3} with only one of the two independent molecules of the asymmetric unit shown. The displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as circles of arbitrary size.

Prock \& Giering, 1989) with theoretical results (Hillier \& Saunders, 1970; Guest, Hillier \& Saunders, 1972; Xiao, Trogler, Ellis \& Berkovitch-Yellin, 1983; Magnusson, 1986), reflects the dominant (60%) p character of the HOMO (highest-energy occupied molecular orbital) (Xiao, Trogler, Ellis \& Berkovitch-Yellin, 1983).
The cone angle θ was calculated as $113 \pm 2^{\circ}$ and is in fair agreement with the value of $118 \pm 4^{\circ}$ given by Tolman (1970), from measurements using CPK atomic models, and the value of 117° from MM2 calculations as determined by Chin, Durst, Head, Bock \& Mosbo (1994).

Molecule (2) displays a pseudosymmetrical threefoldrotation axis passing through the P atom (Fig. 3). The P - C distances are between 1.841 (2) and 1.844 (2) \AA, and the $\mathrm{C}-\mathrm{C}$ distances average 1.527 (3) and 1.528 (3) \AA. This is in agreement with the values obtained for $\mathrm{P}(n \text {-buty) })_{3}$ (Bruckmann \& Krüger, 1995). The $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles are $98.8(1), 99.4(1)$ and $100.2(1)^{\circ}$ (Table 4). These statistically significant internal differences in bond angles may be due to packing effects. Ab initio computations for PEt_{3} by Magnusson (1986) gave a $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angle of 100.0° and a $\mathrm{P}-\mathrm{C}$ distance of $1.850 \AA$, assuming a threefold-rotation axis passing through the P atom.
The cone angle θ was determined as $162 \pm 2^{\circ}$. This is in excellent agreement with the value obtained by Chin, Durst, Head, Bock \& Mosbo (1994) for an MM2optimized geometry. Tolman (1970) lists a value of $132 \pm 4^{\circ}$, obtained by folding back the flexible $\mathrm{C}_{2} \mathrm{H}_{5}$ substitutents on phosphorus while maintaining threefold symmetry.

Fig. 3. ORTEPII plot of PEt_{3} showing the labelling of the non-H atoms. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as spheres of arbitrary size.

Experimental

Crystals of (1) and (2) were grown by zone-melting techniques in argon-filled glass capillaries with a focused halogen lamp as heat source (Brodalla, Mootz, Boese \& Osswald, 1985). For (1), pentane was used as solvent, $T_{\text {melt }}$ was 188 and $T_{\text {growh }}$ was 184 K . For (2), $T_{\text {melt }}$ was 187 and $T_{\text {growth }}$ was 185 K .

Compound (1)

Crystal data
$\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{P}$
$M_{r}=76.08$
Orthorhombic

Pnma

$a=21.472(5) \AA$
$b=9.117$ (1) \AA
$c=5.186(1) \AA$
$V=1015.2(3) \AA^{3}$
$Z=8$
$D_{x}=1.00 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
1383 measured reflections
1221 independent reflections
880 observed reflections
$[I>2 \sigma(I)]$
Refinement
Refinement on F
$R=0.037$
$w R=0.049$
$S=1.9$
880 reflections
87 parameters
$w=1 / \sigma^{2}(F)$

Monoclinic
$P 2_{1} / a$
$a=9.495$
(4) \AA
$b=7.421$
(1) \AA
$c=11.151$ (3) \AA
$\beta=90.71$ (2) ${ }^{\circ}$
$V=785.7(4) \AA^{3}$
$Z=4$
$D_{x}=1.00 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
9739 measured reflections 1805 independent reflections 1727 observed reflections
$[I>2 \sigma(I)]$

Refinement

Refinement on F
$R=0.059$
$w R=0.068$
$S=4.7$
1727 reflections
124 parameters
$w=1 / \sigma^{2}(F)$

Cell parameters from 25 reflections
$\theta=10-23^{\circ}$
$\mu=0.243 \mathrm{~mm}^{-1}$
$T=102 \mathrm{~K}$
Cylindrical height: 0.6 mm diameter: 0.3 mm
Colourless
$R_{\text {int }}=0.0476$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-12 \rightarrow 12$
$k=0 \rightarrow 9$
$l=0 \rightarrow 14$
3 standard reflections frequency: 30 min intensity decay: 9.8%

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (2)

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.04 \\
& \Delta \rho_{\max }=1.04 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.68 \mathrm{e} \AA^{-3} \\
& \text { Atomic scattering factors } \\
& \quad \text { from International Tables } \\
& \text { for X-ray Crystallography } \\
& \text { (1974, Vol. IV) }
\end{aligned}
$$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (1)

$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i} \cdot \mathrm{a}_{j}$.				
	x	y	\underline{z}	$U_{\text {eq }}$
C(1)	-0.0546 (2)	1/4	0.7476 (8)	0.037 (3)
C(2)	0.0580 (2)	0.0971 (4)	0.7734 (5)	0.038 (2)
C(3)	0.3055 (2)	1/4	0.2795 (8)	0.032 (2)
$\mathrm{C}(4)$	0.1930 (2)	0.0975 (3)	0.2495 (5)	0.032 (2)
$\mathrm{P}(1)$	0.0225 (1)	1/4	0.5973 (1)	0.025 (1)
$\mathrm{P}(2)$	0.2276 (1)	1/4	0.4276 (2)	0.023 (1)
$\mathrm{P}\left(1^{\prime}\right)$	0.018 (3)	1/4	0.935 (7)	0.11 (1)
$\mathrm{P}\left(2^{\prime}\right)$	0.228 (1)	1/4	0.095 (4)	0.049 (5)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (1)

$\mathrm{C}(1)-\mathrm{P}(1)$	$1.830(5)$	$\mathrm{C}(1)-\mathrm{P}\left(1^{\prime}\right)$	$1.85(5)$
$\mathrm{C}(2)-\mathrm{P}(1)$	$1.833(3)$	$\mathbf{C}(2)-\mathrm{P}\left(1^{\prime}\right)$	$1.835(3)$
$\mathrm{C}(3)-\mathrm{P}(2)$	$1.841(5)$	$\mathrm{C}(3)-\mathrm{P}\left(2^{\prime}\right)$	$1.92(3)$
$\mathrm{C}(4)-\mathrm{P}(2)$	$1.827(3)$	$\mathrm{C}(4)-\mathrm{P}\left(2^{\prime}\right)$	$1.772(3)$
$\mathrm{C}\left(2^{i}\right)-\mathrm{P}(1)-\mathrm{C}(2)$	$99.1(1)$	$\mathrm{C}(2)-\mathrm{P}(1)-\mathrm{C}(1)$	$99.4(1)$
$\mathrm{C}\left(4^{\mathrm{i}}\right)-\mathrm{P}(2)-\mathrm{C}(4)$	$99.1(1)$	$\mathrm{C}(4)-\mathrm{P}(2)-\mathrm{C}(3)$	$99.1(1)$
$\mathrm{C}\left(2^{\mathrm{i}}\right)-\mathrm{P}\left(1^{\prime}\right)-\mathrm{C}(2)$	$99(2)$	$\mathrm{C}(2)-\mathrm{P}\left(1^{\prime}\right)-\mathrm{C}(1)$	$98.7(1)$
$\mathrm{C}\left(4^{\mathrm{i}}\right)-\mathrm{P}\left(2^{\prime}\right)-\mathrm{C}(4)$	$103(1)$	$\mathrm{C}(4)-\mathrm{P}\left(2^{\prime}\right)-\mathrm{C}(3)$	$98.1(1)$

Compound (2)

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{P}$
Mo $K \alpha$ radiation
$M_{r}=118.16$
$\lambda=0.71069 \AA$
Symmetry code: (i) $x, \frac{1}{2}-y, z$.

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.03 \\
& \Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.34 \AA^{-3}
\end{aligned}
$$

Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)
$R_{\text {int }}=0.01$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 6$
$k=0 \rightarrow 1$
3 standard reflections frequency: 30 min intensity decay: $\mathbf{2 . 7 \%}$

Lists of structure factors, anisotropic displacement parameters and H -atom coordinates have been deposited with the IUCr (Reference: HR1047). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2 HU , England.

References

Bartell, L. S. \& Brockway, L. O. (1960). J. Chem. Phys. 32, 512-515. Brodalla, D., Mootz, D., Boese, R. \& Osswald, W. (1985). J. Appl. Cryst. 18, 316-319; adapted for use on a CAD-4.
Bruckmann, J. \& Krüger, C. (1995). Acta Cryst. C51, 1152-1155.
Chin, M., Durst, G. L., Head, S. R., Bock, P. L. \& Mosbo, J. A. (1994). J. Organomet. Chem. 470, 73-85.

Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Davis, R. E. \& Harris, D. R. (1970). DAESD. Roswell Park Memorial Institute, USA.
Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fox, P. C., Bowen, J. P. \& Allinger, N. L. (1992). J. Am. Chem. Soc. 114, 8536-8544.
Guest, M. F., Hillier, I. H. \& Saunders, V. R. (1972). J. Chem. Soc. Faraday Trans. 2, pp. 867-873.
Hillier, I. H. \& Saunders, V. R. (1970). Trans. Faraday Soc. 66, 2401-2407.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lide, J. R. Jr \& Mann, D. E. (1958). J. Chem. Phys. 29, 914-920.
Magnusson, E. (1986). Phosphorus Sulfur, 28, 379-394.
Rademacher, P. (1987). Strukturen organischer Moleküle. Weinheim, New York: VCH.
Rahman, Md. M., Liu, H.-Y., Eriks, K., Prock, A. J. E. \& Giering, W. P. (1989). Organometallics, 8, 1-7, and references therein.

Roberts, P. \& Sheldrick, G. M. (1976). XANADU. Program for Crystallographic Calculations. Univ. of Cambridge, England.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
Tolman, C. A. (1970). J. Am. Chem. Soc. 92, 2956-2965.
Tolman, C. A. (1977). Chem. Rev. 77, 313-348.
Tripos Associates Inc. (1994). SYBYL. Version 6.03. Tripos Associates Inc., St Louis, USA.
Xiao, S.-X., Trogler, W. C., Ellis, D. E. \& Berkovitch-Yellin, Z. (1983). J. Am. Chem. Soc. 105, 7033-7037.

Acta Cryst. (1995). C51, 1158-1160

2-Cyano-2-methylsparteine

Irena Wolska and Teresa Borowiak
Laboratory of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

(Received 20 July 1994; accepted 28 November 1994)

Abstract

In the title compound, $[7 S-(7 \alpha, 7 \mathrm{a} \alpha, 14 \alpha, 14 \mathrm{a} \alpha)]$-dodeca-hydro-4-methyl-7,14-methano-2H,6H-dipyrido[1,2-a:

$\left.1^{\prime}, 2^{\prime}-e\right][1,5]$ diazocine-4-carbonitrile, $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{3}$, the two quinolizidine moieties have been found to have trans A / B and trans C / D configurations. The piperidine rings A, B, C and D assume chair, chair, boat and chair conformations, respectively. The methyl substituent has been shown to adopt an equatorial orientation, with the cyano substituent in an axial position.

Comment

This work is a continuation of our studies on sparteine derivatives. Sparteine is the most common among the bisquinolizidine alkaloids isolated from lupine plants. It has been widely used as a model compound for the study of factors influencing conformational-configurational changes. The A / B ring system is not susceptible to conformational changes, whereas the C / D system is, owing to an easy inversion at the N16 atom.

Generally, free bases of sparteine derivatives have a trans configuration/boat-chair conformation of the C / D fragment, while the cations show a cis configuration/ chair-chair conformation of this fragment, e.g. sparteine (Skolik, Krueger \& Wiewiórowski, 1970) and the sparteine cation (Borowiak, Bokii \& Struchkov, 1973), and 2-phenylsparteine (Katrusiak, Figas, Kałuski \& Lesiewicz, 1989) and its cation (Kubicki, Borowiak \& Boczoń, 1991). In these examples, the A / B fragment was found to have a trans configuration/chair-chair conformation in the free base as well as in the cation.

In this paper, we present the results of an X-ray structural analysis of 2-cyano-2-methylsparteine (I) (Fig. 1). The structure is similar to the examples cited above. The piperidine rings A, B and D adopt chair conformations with ring C having a boat conformation. The A / B junction is trans [torsion angles $\mathrm{C} 2-\mathrm{N} 1$ $\mathrm{C} 6-\mathrm{C} 5-52.5$ (3) and $\left.\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 1056.5(3)^{\circ}\right]$, as is the C / D junction [torsion angles $\mathrm{C} 9-\mathrm{C} 11-\mathrm{N} 16-$ C17-54.0(3) and C12-C11-N16-C15 $59.0(3)^{\circ}$]. The proper enantiomorph has been selected on the

(I)
basis of the absolute configuration of naturally occurring sparteine derivatives (Klyne, Scopes, Thomas, Skolik, Gawroński \& Wiewiórowski, 1974) to be C7-(S), C9(S).

The methyl substituent occupies an equatorial position with torsion angles $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 20$ and $\mathrm{C} 6-$ $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 20$ of $-178.9(2)$ and $174.9(2)^{\circ}$, respectively. The cyano group is axial with torsion angles $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 18 \mathrm{64.2}(3)$ and $\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 18$ $-64.9(3)^{\circ}$.

[^0]: Lists of structure factors, anisotropic displacement parameters and H -atom coordinates, and complete geometry for (3) only, including H -atom geometry, have been deposited with the IUCr for all three structures (Reference: HR 1046). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

